Index

A
Abnormal laboratory values of participants
advising screenees about, 70, 71
referrals to health care providers following, 74
safety monitoring board's advice for, 69-70
Activity factor (AF) for estimating total caloric need, 258,260
Ad libitum (ad lib) diet
advantages and disadvantages of, 143
food records for, 22-23
recipe calculation for, 23
software for, 20-21
Adherence to research diets. See als \bullet Compliance issues in controlled diet studies
assessing, 4, 73-74
by children, 127-128
educating participants about, 324
ethics of addressing, 71, 74
monitoring, 7
objective methods for assessing, 194, 214
subjective methods for assessing, 104
Administrative dietitian, position description for, 311
Administrative expenses of controlled diet studies, 153
Advertising to recruit participants for controlled diet studies, 68
advantages and disadvantages of, table of, 82
content of, 82, 119
costs of, 81, 153
effectiveness of, table of, 83
e-mail, 84
flier and poster, 81-83, 84
mass mailing, 81-83, 84
news stories for, 83-84
newsletter, 84
newspaper, 81, 82-83
personal contact/networking/word of mouth, 81-83, 84
placement of, 82-83
radio, 81,83
sample advertisements for, 83
telephone, 81-82
television, 81, 83
Agricultural Handbook No. 8 series (USDA), 23
Alcohol consumption during controlled diet studies
in holiday periods, 205-206
level of dietary control and, 151
in multicenter studies, 400-401
recording, 208
as underreported, 235
substituting for, 237
Alcohol contribution to body's energy
balance, 158
Aliquots
of composites for assay, 348, 354355
used for primary measurements, discarding, 378
Alleles
associated with specific phenotype, 49
defined, 47, 56
transmission of, 49-50
unreported half-siblings identified by, 54-55
Aluminum content of foods
containers as affecting, 164
increased by low-sodium baking powder, 164
Amino acid powders, 223
Analyte exchange for compartmental interaction, 240
Analytical approach, assumptions of, 17
Animal studies, 2
contrast of human controlled diet studies and, 62
Anthropometric data
for children in controlled diet studies, 133-134
staff time to collect, 299
Antioxidants, research into vitamins as, 159
Apolipoprotein A-IV (ApoA-IV) gene, 51
Apolipoprotein B (ApoB) gene, 51
Apolipoprotein E (ApoE) gene, 50-51
Apples, browning of, 185
Artificial sweeteners
extraneous nurients from, 208-209
relative sweetness of, 225
Ascertainment of study subjects in genetic research, 45-46
ASCII (American Standard Code for Information Interchange) format
defined, 21
reports in, 25
Association of Official Analytical Chemists (AOAC), 341
Atwater factors, 156-157
Authors of papers about controlled diet studies, advance agreement about, 74

Auto Nutritionist IV CAMP program, 38

B

Balance studies. See Metabolic balance studies
Bar code technology
applied in research kitchen management, 29-30
for food labels, 30, 186
products for, 41
Barium sulphate as continuous marker for fecal collection, 387
Basal body temperature (BBT), 111, 113, 115, 119
Basal energy expenditure (BEE), HarrisBenedict equation for, 256
Basal metabolic rate (BMR) equation, 256
Baseline period of controlled diet studies, 144
Beverages in controlled diet studies. See alse Fluids and Water
caffeinated, 236
carbonated, 236, 237
considerations for protocol design of, 237
delivering, 196
extraneous nutrients in, 208, 236-237
food codes as preserving, 187
for formula diets, 213
intakes and allowances for, 234-236
in multicenter studies, 400-401
providing, 236-237
Bias
acceptable, 370
defined, 369
method, 350, 356-357
Biohazardous material handling, 73
Biological markers, 49
chemical, 379
of completeness of collection, 245, 379, 383-384
costs of, 384
defined, 379
of dietary compliance, 380-382
in feces. See Fecal collection
natural nutrient, 379, 384
in urine. See Urine collection
uses of, 379, 380
Blinding processes and participant identities, 15
computer applications to assist, 32
ethical issues in, 199
for formula diets, 212, 231
goal of, 198
in multicenter controlled diet studies, 394
practical approaches to, 199-200
Blocks in parallel-arnn study designs, 12-13
Blood collections during controlled diet studies, 387-388. See alse Sample collection
from children, 135-137
consideration of need for, 63
limitations for, from women, 120
in stable isotope experiments, 250 , 252
miming of, 387-388
raining staff for, 387
venous vs capillary, 373
Blood pressure
affected by mensurual cycle, 116
DASH study of effects of dietary patterns on, 391
Body fat distibution, genes influencing, 44-45
Body mass index (BMI), equations for predicting REE using, 258
Bomb calorimeter, oxygen, 329-330
energy value of liquid formula determined by, 330
process of, flowchart of, 331
Bonferroni adjustment to p -values, 17
Brands of food
documenting study's, 265
specified to standardize diet in mulucenter studies, 399
variance in numient content among, 23
Brilliant blue dye as intermittent marker, 386
Browser, Web, 35
Budgets of controlled diet studies
for chemical analysis, 364
computer applicaions for, 33
planning, 152-153
for recruiment of participants, 81

C

Caffeine clearance affected by menstrual cycle, 117
Calcium chloride, 164
Calcium content of foods, 165, 189-190
Calculations needed for controlled diet studies, 24-25
Calorie levels
adjusing, 204, 205, 401
average, 147
for children in controlled diet studies, 132-133, 138
dietary techniques for managing, 260
estimating needed, 258, 396
food substurions maintaining, 163
masking, 199-200
number in study of, 147
sample diet using average, 172
ways of determining, 156-158

Calorimetry

defined, 329
energy value determined by, 330
to monitor composition of formula diets, 329
Carbohydrate equivalents, 163
Carbohydrates in formula diets complex, 225
properties of, 224
simple, 223-224
Carbon isotope ${ }^{13} \mathrm{C}$
in formula diets, 221
growing plants isotopically labeled with, 189
natural concentrations in plants of, 251
Carbon isotope ${ }^{65} \mathrm{C}$ in intrinsically labeled kale, 190
Caretenoid content of foods, 159
Carmine red dye as intermittent marker, 386
Carryover effect, 11-12
defined, 144
inves ingated in crossover studies, 17
Case-control studies, 2, 3
CBORD Diet Analyzer for research diet design, 27, 38, 166
Cervical mucus
monitoring, 113, 115
Type E and Type G, 115
Checklists comparing ray against menu, 104
Chemical analysis, 329, 336-367
budget considerations of, 364, 365
checklist for, 349
costs of, 341
documentation of, 361
evaluating data of, 363-364
glossary of terms for, 349
goal of, 346
list of laboratories for, 362-363
methods of, 355-358
overview of, 347-348
reasons for, 336
paradigm for, 343-346
selecting dietary components for, 343
for validation of diet, 344-345, 363, 395, 397, 399
Chewing gum
chewing acton from, 213
extraneous nutrients from, 208
Children
cognive and psychosocial development of, 127-128
egocenvicity of, 127
erratic apperites of, 135
height measurements of, 133-134
historical data about, 134
water intake of, 233-234
Children as participants in controlled diet studies, $6,22,126-140$
adjusting study foods for, 128-129, 138
cooperation levels of, 127
enhancing compliance of, 137-138, 329
explaining expectaions of study to, 69
favorite foods of, 129, 161
food intake measurements for, 134135, 137
growth charts for, 133-134
incentives for, 72
informed consent for, 65, 67-68
need to include, 126-127
nutrient needs of, 132
physical hazards or health risks for, 131-132
recruitment and screening of, 136137
research setting of meals for, 137
sample collecton for, 135-136
stress on, 71
termination rate of, 136
ume factors for, 135
Cholesterol absorption, 50
Cholesterol content
foods modified to reduce, 191
measurement of, 337, 341, 370-377
Cholesterol levels affected by mensual cycle, 116
Chromium oxide as continuous marker for fecal collection, 387
Clinical trials, 2, 3-4, 394
Code of Federal Regulations (CFR), food regulations in, 191-192
Coinves gators
physicians named as, 63
plan delineating dumies of, 97
roles of, 62
Color coding research diets, 199-201
Coloring agents (inert dyes) as intermittent markers in fecal collections, 386
Committee on Amino Acids, Namonal Academy of Sciences, 158
Comparmental model, 238-254
creaing, 240-242
defined, 238
planned simultaneously with stable isotope studies, 250
software for, 242
uses of, 252
Compliance, participant
assessing and fostering, 102, 104106, 401
biological samples collected as objective measure of, 379
calculating, 15
for formula diets, 214
increasing information to paricipants to improve, 329
involvement of family and significant others to ensure, 105-106
in mulvicenter studies, 397, 398, 400-401
normal serving sizes as enhancing, 160
pregnancy as affecting, 120
screening actions as indicators of, 96
team approach to, 106
Compliance issues in controlled diet studies, 16, 102-107
for children, 137-138, 139, 329
Computer applications in controlled diet studies, 19-43, 165-176
for calculating research diets and ad lib dietary intakes, 19-27, 165
database management system (DBMS), 28
desktop publishing, 28
food and nutrition, product listing of, 38
for food labels, 31, 186-187
for food production sheets, 30-31
foodservice management, 29-33
general, 27-29, 39, 41
graphics, 29
for graphing children's growth data, 134
linear programming, 26, 176
meetings where vendors demonstrate, 35
for recipes, 31-32
resources for, 40
selecting, 165-166
spreadsheet, 26, 28, 33, 37, 39
staical analysis, 28-29
word processor, 27-28, 32, 36
Computer-assisted menu planning
(CAMP) program
Auto Nutrimionst IV, 38
IDC, 27, 38
in research, $26-27$
sample of, 26
Confidentiality issues
in generic studies, 55
in reporing study results, 74
in storage of paricipant materials, 72
Confounded designs, avoiding, 13, 119
Containers, food
disposable, 152, 196, 276
glass and ceramic, 182
for meals eaten off site, 196-197
Continuing Survey of Food Intakes by Individuals (USDA Survey Research Laboratory), 156, 167-168
Control groups
in controlled diet studies, 13
in pilot studies, 149
Control limits for chemical analysis QCM values, 360
Controlled diet studies, human
ad lib component stage of, 19, 20, 23
advertising for recruiment in, 68
application of quality control in, 327330
areas of flexibility in, 100-101
budget planning for, 152-153
close-out of, 102, 108
computer applications in, 19-43
conflicts and problems during, 99, 100
core functions of, 302
costs of, estimating, 150-153, 189, 364, 365
data management for, 15-16
delivering diets for, 195-211
designing diets for, 155-178
early termination of, 65
emergency situaions during, 101102
enrollment in, fixed versus rolling, 147
ethical considerations in, 55, 62-75, 122
evaluation of, 106
exit interview following, 102-103
exit questionnaire for participants in, 106-107
feasibility of protocol for, 7
feeding component stage of, 19, 23
food preferences for ethnic groups in, 22
genetic effects in, 44-60
human factors of, 61-140
implementing, 15-16, 98-99
initiation stage of, 96-97
interim questionnaire for free-living participants in, 106
key aspects of conducting, 5-7
long-term, $24,80,93,100$
management of, 99-102
medications during, 70
misunderstandings about diet in, 99
monitoring progress of, 65
multicenter, 390-403
multiple concurrent, 147-148, 302, 304, 315, 318-319
multiple dietary reatments in, 146147
outcome of, enhancing, 335-403
paricipants in. See Paricipants in controlled diet studies
personnel organization of, 302-315.
See als- Staff of controlled diet studies and individual positions
planned termination of, 73-74
planning, $10-15,62-68,142-154$, 265-269
portion sizes in, 160-161
post-study corrective period for, 62-63
premature termination of, 73
providing beverages in, 236-237
publishing results of, 319, 321
purchasing list for, 172. See alse
Food purchasing for controlled diet studies
quality goals for, 323. See als Quality control
reporting results of, 74
research diets for. See Diets, research
scheduled to avoid holidays and con-
sider seasons, 148
scientific rationale of, 2-9
seting of. See Inpatient controlled
diet studies and Outpatient con-
rolled diet studies
staisical aspects of, 10-18
study design of, 1-60, 62-63, 118119
twins in, 45-46, 51-53
types of, 4
water intake during, 234-236
weight gain or loss during, 204-205, 255, 260
Controlled trials, randomized, 2, 3-4, 394
Controlled-nutrient diets, maintenance of nutrients in, 143-144
Cookies
chocolate drop, 286
lemon, 285-286
low-sodium, 281
oameal, 278, 284-285
protein-free, 217, 224
solid fat in, 226
sugar, 281-282
as unit foods, 260,278
Cooking and preparation techniques for controlled diet studies, 182, 184185
for baked goods, 185, 190, 191
for beverages, 186
for condiments and spices, 186
for dry goods, 185
for meat, poultry, and fish, 182, 184
for mixed dishes, 186
for vegetables and fruits, 184-185
Copper metabolism
${ }^{65} \mathrm{Cu}$ isotope to study, 241-242
stable isotope racers and compartmental modeling to study, 252
Coronary heart disease, diet and, 5
Courier service to deliver research diet meals, 197-198
Covariates, incorporang, 17
Creatinine as marker to ensure completeness of urine collection, 383384
Critical points, quality goals for, 325
Crossover design in controlled diet studies, 4, 10-15
carryover effect in, 17
controlling for mensual cycle phase in, 119
randomization scheme for, 16
sample size for, 12,14
to study effects of carbohydrate content on glycemia and plasma lipoproteins, 391
variation within participants used in, 15
Cross-sectional studies, 3
D
Daily record form for paricipants, 265, 270, 277
Dairy food substitutions, 162-164, 190 in fat reduction or replacement, 190191
DASH study. See Dietary Approaches to Stop Hypertension (DASH) study
Data analysis in controlled diet studies, 16-18, 119, 301, 377
Data and safety monitoring board, role of, 65, 392-394
Data collection
about food refusals, 329
guidelines for, 62, 99
mensurual cycle considerations in, 119
quality control for, 324-326
staffing and insmuments for, 299, 306
standardizing aspects of, for children, 133, 138
Data envy
of changes to study data, 72
in controlled diet studies, 15-16
edit checks for, 21, 24
minimizing errors in, 24
in nulcient-calculation programs, 20-21
Data files
development of, 15
security of, 298
Data management system for controlled diet studies, 15-16
Data security, ensuring, 15, 298
Data storage and archiving, 15, 72
Database
adding foods to, 23
developing customized, 23
documenting, in conrolled diet studies, 27,265
features of, 21-24
food codes generated from, 186
food composition, 166-167, 234, 336-338
foods included in, 22-23
nutrient values for foods in, 20, 158159
nutrients included in, 23-24
recipe, 31-32
recruitment monitoring, 81-82
selecting, 165-166
ime-related, 24
Database integrity during updates, 24
Database maintenance, 24
Database management system (DBMS)
to analyze menus, 166
convering food composition information into file for, 167
to generate food production sheets, 30
hardware support for, 167
uses in controlled diet studies, 28
Database sparseness/completeness, 23
Data-dredging, 18
Datasets
compiling complete, 24
maintained by USDA, 21-22
Delivery of research diets, 195-211
cafeteria-style, 196
courier service for, 197-198
in mulucenter studies, 400-401
off-site, 196-198
on-site, 195-196
prepared-tray method of, 196
problems and solutions in, 210
vending machines for, 198
of week's supply of food, 197
DELTA study. See Dietary Effects on Lipoproteins and Thrombogenic Activity (DELTA) study (19921996)

Desktop publishing uses in controlled diet studies, 28
Deuterium stable isotope ${ }^{2} \mathrm{H}, 251-252$
Diet classification system, St Jeor and Bryan, 143
Diet composites, documening, 265
Diet cycle. See Menu cycle
Diet development process, crivical points in, 327
Diet Formulation Questionnaire, 266269
Diet periods, duration of, 6
Diet Planner program, 25
Diet samples for compositing, 347, 350354
Diet study. See Controlled diet studies, human
Diet summary, documening, 264
Diet types, 6, 142-145. See als Diets, research
ad lib. See Ad libitum (ad lib) diet
${ }^{13} \mathrm{C}$-neutral, 221
constant, 144, 149, 182, 307, 309, 313-314
controlled-nutrient, 143-144
depletion, 145
estimated, 143
formula. See Formula diet and Liquid formula diets
frozen, 186
habitual. See Ad libitum (ad lib) diet
high-fiber, 191
hyperosmolar, 221
liquid formula. See Liquid formula diets
modified food, 189-193
reference, 144
replemon, 145
run-in (stabilization), 144
weighed, $143,307,309$
whole-food (conventional), 127, 182186, 244, 338
Diet-disease relationship, testing
epidemiologic studies for, 3
example of, 5
experimental studies for, 3-4
lines of investigation for, 4-5, 7
research methodology for, 2-3
Dietary Approaches to Stop Hypertension (DASH) study
experimental diets of, 391
food procurement, preparation, and storage in, 400, 402
forms used in, 402
as mullicenter conrolled diet study, 390
organizanal sucture of, 393
outcome of, 392
planning by Diet Subcommittee of, 394-398
planning time line for, 401
sponsored by NHLBI, 390
statistical power of, 391
Dietary cholesterol responsiveness, metabolic and generic basis of, 50
Dietary counseling
after studies, 205, 397
wials, 4
Dietary Effects on Lipoproteins and Thrombogenic Activity (DELTA) study (1992-1996), 77
experimental diets of, 391
food procurement for, 400
food storage for, 400
as mulicenter, collaboraive controlled diet study, 390
organizational sucture of, 393
outcome of, 392
pilot study of, 398
sampling plan for, 346
sponsored by NHLBI, 390
study diets of, 127
two protocols of, 390-391
women paricipants in, $85,122,390$
Dietary intervention, 141-262
delivering, 4, 302
Dietary patterns affected by mensual cycle, 117
Dietary Reference Intakes (DRIs)
for children, 126, 132
to evaluate dietary adequacy, 155
Dietary supplements, 165
Diets, research. See als@ Adherence to research diets
archiving samples of, 230, 343, 346
chain of custody for materials in, 187
color-coding, 199-201
common problems of participants eating, 204-207
computer applications for calculating, 19-27, 176
computer applications for designing, 165-176
costs of, 150, 189
delivering, 195-211, 329
designing, 6, 155-178
details in planning, 164-165
development process for, 25-26
as directing many foodservice tasks, 29-30
linear programming to calculate, 26 , 176
liquid formula. See Liquid formula diets
macronulient distribution of, 170
as mathematical problems, 26
monitoring, 342, 345-346
nutrient content table for, 170
nutritional needs of women using, 122
physical side effects of, 122
producing, 179-194, 327-328
requests for changes in, 100-101
safety and sanitation standards for, 180, 187-189, 191-193, 196-197, 229
sources of error and variance of nutrient content of, 339, 340
staff understanding of, 97
statistical reports for, 170
summary evaluation of, 265
tracking food production in, 186-187
types of. See Diet types
verifying composition of, 329,336367
Diets, test, 143
Digestible energy content, calculating, 242-243
Dining areas
atmosphere of, 297
lighting and use of color in, 297, 298
noise control in, 297
for serving meals, 296-297
Disease, selection of study participants at risk for, 7
Disposable containers for controlled diet studies, 152
DNA sequence variation, identification and analysis of, 48-50
Documentation of controlled diet studies, $264-270,342,361,377$
Doubly labeled water method to measure energy expenditure, 251-252, 258
Dropout rate in controlled diet studies, calculating, 15
Dropouts
avoiding, 101
discussing reasons for termination of, 101
effect on other paricipants of, 101-2
policies for managing, 16

Dye markers for fecal collections, 245. See also Fecal collection

E

Eating disorders, screening prospective participants for, 122
Ecologic studies, 3
Economy of scale for controlled diet studies
in food purchases, 180
in number of participants, 147
Edit checks for data enry, 21, 25
Eligibility criteria for study participants, 69, 72, 77-80
during screening, 88-89
E-mail (electronic mail), 34
as recruitment strategy, 84
Emergency situations during controlled diet studies, 101-102, 205
End-of-shift checklist, 272
Energy balance equations, 256, 258
Energy expenditure
basal (BEE), Harris-Benedict equation for, 256
doubly labeled water to measure, 251
resting (REE), equations for, 256259
total (TEE), equations for, 256-259
Energy prescripions, 255-260
Energy requirements of formula diets, 214
Epidemiologic studies, 3
Equations. See alse individual equations
energy balance, 256, 258
predictive, 256, 258
Equipment for controlled diet studies
budgeting costs of, 153
contingency plans for breakdowns of, 148
for formula diets, 230
in research kitchens, 292-296
Estradiol production, 111
Estrogen production decreased during menopause, 116
Ethical considerations in controlled diet studies, 55, 62-75, 122
for children, 130-132
Ethnic groups in controlled diet studies
food patterns of, 161-162
food preferences of, 22
publication resources for, 162
Evidentiary chain for specimens, 375377
Exit interview following study, 102103, 397
Exit questionnaire for participants, 106107
Expenses of controlled diet studies, tracking, 147
Experimental studies, 3-4
Extended pedigrees in genetic research, 45-46
Extract blends, table of, 229

F
Facilities for controlled diet studies. See also Dining areas and Kitchens, research
human factors in, 297-298
for multicenter studies, 398-399
op timal use of, 147
planning, 163-164
tailoring study to, 148-149
Family Feeding Study (FFS), prefeeding phase of, 127
Family studies in generic research, 45-46, 54-55
Fat
baked products to deliver dietary, 271
body weight reduction by reducing dietary, 258
chemical assays of, 356
DELTA study of effects on blood lipids and hemostatic factors of, 390
effects on blood pressure of, 391
food and products used to reduce or replace, 190-191
in formula diets, 225-226
masking, 199
principal fatty acids of, 227
saturated, 225-226
solid, 226
variance in foods' content of, 337338
Fat Tolerance Test Meal, 143
Fecal collection, 384-387
in balance studies, 246, 249, 252
challenges in making, 379,384
continuous markers to ensure completeness of, 385, 386-387
extrinsic markers in capsules or food for, 386
freezing, 384, 385
intermittent markers to define the
vimespan of, 385, 386
procedures for, 384-385
real food markers (com kernels, beets, and seeds) to mark diet intake period in, 386
sources of error in, 244-245
in stable isotope experiments, 250
Feeding periods, length of, 148
Feeding studies. See Controlled diet studies, human
FIAS (Food Intake and Analysis System) nutrient calculation program, 38, 166
nulient-retention factors for, 23
Fiber
crude, 159
experimental foods to increase, 191
insoluble, 158, 191
inverse relationship of blood pressure level and amount of dietary, 391
natural, as lacking in formula diets, 213, 216, 219
soluble, 158, 191
sources of, 219
total dietary, 158-159
Fiber intake recommendations, 158
Filling cells, 119, 161-162
Fisher's Z transformation, 53
Fliers as recruitment strategy, 81-84
Flowcharting a process, 325-326, 330331, 345
Fluid balance
affected by mensual cycle, 117
weight changes affected by, 260
Fluids, 232-237. See als Beverages in controlled diet studies and Water
considerations in protocol design of, 237
daily patterns for intake of, 235
Follicle-stimulating hormone (FSH)
levels as increasing during menopause, 115-116
production of, 110-111
Follicular development, 111
Food additives, 192-193
Food allergies and intolerances, 206-207
of children, 132, 136, 206
food refusals because of, 204
for formula diets, screening potential participants for, 213
sources of information about, 207
substitutions for, 162-163, 190, 206
Food analysis methodology, 338-342. See als Chemical analysis
Food analysts, role in controlled diet studies of, 343
Food and Drug Administration (FDA)
experimental foods managed as drugs by, 193
folic acid requirements of, 159
food additives regulated by, 192-193
food code guidelines of, 188
Food choices
children's acceptance and preferences in, 128-130
for vending machine feeding systems, 198
Food codes
assigned to foods, 186-187
guidelines as, 188
Food composition
analysis of, 152, 244
of fresh food, variation in, 181-182, 345-346
tables of, 20, 337
Food consumption guidelines, 200, 204, 401
Food costs
computer applications for, 33, 39
variance among diets of, 151-152
Food distributor, consistency of food
content aided by using same, 180181
Food frequency questionnaires
beverages on, 235
level of dietary control as driving use of, 151
Food intake
of children in controlled diet studies, 134-135, 136, 137
estimating, 256
spontaneous, 117
unauthorized, 244
Food labels, 31, 186-187
Food models, software for, 42
Food preferences
assessed before study initiation, 161, 256
children's, 128-130
of ethnic groups, 22
of participants, $92,129,161,329$
of prospective participants examined during screen, 92
by region in multicenter studies, 399
Food preparation procedures in research kitchen
cooking techniques in, 182, 184-186
of formula diets, $212,228,230$
for multicenter studies, 398-399, 400
simplifying, 149
for take-out meals, 146, 197
weighing and measuring, 182-183, 185
Food Processor (ESHA Research), 38, 166
for research diet design, 27
Food production, critical points in, 327328
Food production sheets for cooks, automated, 30-31
Food production technician, 309, 314
Food purchasing for controlled diet studies
commercial packaged products vs from-scratch foods in, 152
dietary nutrient levels affected by, 338
donated foods vs, 399-400, 402
fresh foods, 181-182, 185
goals of, 151
in multicenter studies, 396, 399-400
overpurchasing quantities in, 179180
of poultry and meats, 181
raw or cooked weight of food considered in, 179
safety factor for, 180
shelf life of foods considered in, 180-181
single-batch lots for, 152, 179, 181182, 184, 186, 214, 299

Food records
for ad lib components, 22-23
to estimate food intake, 256
food sources in, 180-181
level of dietary control as driving use of, 151
Food refusals, 204, 329
Food residues
bread to collect, 250
drinking the rinse to ensure intake of, 213, 244, 246, 250
Food safety issues
for biomarkers, 386
critical points for, 328
for experimental foods, 191-193
in food purchasing, 180
for formula diets, 229
for multicenter studies, 396
in off-site delivery, 196-197
Food storage for controlled diet studies
canned goods, 180-181, 296
capacity of facility important in, 180
composites, 355
dry goods, 152, 180-181, 220, 296
costs of, 152
frozen or refrigerated, 152, 180-181,
184-185, 230, 296, 315, 325, 400
maximum time for, 180-181, 230
minimizing, 149
for multicenter studies, 396, 400
nutrient constancy throughout, 179
planning for emergency, 148
shared spaces for, 296
for studies with children, 137
Food subsets, 172-176
Food substitutions in controlled diet
studies, 161
Food temperatures
danger zone, 230
during homogenization of samples,
354
for potentially hazardous foods, 327
temperature-sensitive strips to moni-
tor take-out meal, 197
Food values, estimated, 23
Foods
bland, 161
browning of, 180, 185
core, 172-174, 176
disliked, 161, 162
emulsification of, 226, 228
free. See Free foods
gross energy of, calculating, 156
key, 160
modifiable, 172-176
modified and experimental, 189-193
mouth feel of, 199, 228
portion sizes of, 160,237, 328
potentially hazardous, 328
selected for research diets, 160-165, 181-182
spilled, 99, 196, 210
in take-out meals. See Take-out meals
thermic effect of, 243
unit. See Unit foods
variability of, controlling, 180-182, 399
weights of, 179, 182-184, 186, 196, 272-274, 399
Foodservice expenses, budgeting, 153
Foodservice management, computerassisted, 29-33
Foodservice workers. See Staff of conrolled diet studies
Forms
in DASH study, 402
design and testing of, 15
for multicenter studies, 401-402
out-of-range values controlled for, 16
for planning, 265-269
quality control, 265, 274-276
reviewed for completeness, 16
screening, 88
for take-out meals, 265, 276
Formula diets, 142, 151, 176, 188-189, 212-231. See also Liquid formula diets
advantages of, 212, 231
calculating, 214, 217, 218, 220, 224
calorimery to monitor compositional consistency of, 329
choosing suitable ingredients for, 226
color of, 228
costs of, 212, 214
commercial, 214
deciding to use, 212-213
designing, 214-221
disadvantages of, 212-213, 231
diy powdered, 214
eating techniques for, 213
equipment for, 230
flavor of, 228, 229
gastrointestinal discomfort from, 213
laboratory analysis to verify composi-
ion of, 221
meeting nutrient requirements and
study goals using, 214, 216-221
organolepic aspects of, 228
presenting, 213-214
producing, 226-230
recipes and preparation techniques for, 212, 228, 230
research applicaions of, 231,248249
sanitation issues for, 214, 230
single-lot purchases of, 214, 228
site-produced, 214
solid, 212, 214-216
sources of nutrients in, 222-226
storage of, 214, 230
ume analysis estimates for staff for, 307, 309

Formulations of food products, changes in, 24
Free foods
for children, allowing, 135
for formula diets, 213
for lipid studies, 200
for mulicenter studies, 400, 402
specifying limits on, 146
G
Garnishes, extraneous nuluients from, 208
Gastrointestinal function affected by mensurual cycle, 117
General Clinical Research Centers (CCRCs) (NIH), 302, 304
Paient Satisfaction Questionnaire of, 332
Genes
candidate, 47, 50-51, 56
influencing obesity and body fat diswibution, 44-45
interactions between nution and, 44
for lipoprotein metabolism, 50
localizing and identifying, 47-48
schematic of typical, 48
Generic analyses, initial, 45, 47
Generic bit analysis (GBA), 49
Generic effects in controlled diet studies, 44-60
Generic polymorphisms, 48-50
Generic research
ethical and social issues in, 54-55, 67
glossary of terms for, 56
misspecification of family relationships in, 54
study designs in, 45-50
Genome-wide scan for localizing genes, 47, 48, 56
Genotype information, 49
Graphics software uses in controlled diet studies, 29
Growth data for children in controlled diet studies, 133-134

H
Habitual dietary practices and patterns of participants examined during screening, 92-93
Hard candy, extraneous nulients from, 208
Harris-Benedict equation for basal energy expenditure (BEE), 256
Hazardous Analysis Crivical Control Point (HACCP)
concept, 328
food safety guidelines, 187-188
Hepatis B vaccinations of staff, 73
Heritability analyses, 45
Heritability estimates, 51-54
High-density lipoprotein cholesterol (HDL-C), response to diet of, 51.

See als Dietary Approaches to Stop Hypertension (DASH) study
High-density lipoprotein (HDL) turnover studies, 51
Holiday periods
advance planning for meals during, 205
excep ions to research diets for, 205206
scheduling controlled diet studies to avoid, 148,205
Homogenization of food samples for assay, $347,354,355$
Homogenizers, 230
Hormonal status of women, 109-116, 119-120
confounding effects from, 209
screening questionnaire for, 121
Hormone replacement therapy (HRT), 116, 118
screening prospective participants for use of, 120-121
Hot flashes, 116
Human factors of controlled diet studies, 61-140
Human Genome Project, 56
Hunger problems of paricipants, 204, 244
Hypothesis in human controlled diet studies
creaing testable, 5
study design to test, 5-6

I

Illnesses of parricipants
ethical considerations for, 64-65, 70
food consumption during, 206
termination from study because of, 206
Implementation of controlled diet studies, starical issues in, 15-16
Imprecision of measurements, 369-370
Incentives for paricipants. See alse Payment of paricipants in controlled diet studies
as building morale, 102
for children, 136-137, 329
to increase compliance, 329
in mullicenter studies, 397
Informed consent, 74
for children, 65, 67-68, 131
for dependent groups, 67-68
development of concept of, 65
form for, demands originally not specified in, 63
as foundation of ethical conduct of study, 68
for future analyses of blood or tissue samples, 67
for generic studies, 55, 67
IRB requirement for, 91
liability for health problems specified in, 64-65, 70
sample document for, 66-67
termination criteria for participants specified in, 65, 69
weight issues specified in, 205
for women, 120
Inheritance patterns, 47
Inpatient controlled diet studies
children in, 126
expense of, 146, 151
level of dietary control in, 151
protocol intensity rating guide for, 301
staffing for, 299
Institutional review board (IRB)
approval of study by, 63-64, 65-68
informed consent document from participants required by, 91,120
modifications and additions to protocol reviewed by, 68, 72
need for invasive procedures assessed by, 63
oversight over study protocols of and protection of subjects of, 62,130131
rules for payment of participants specified or assessed by, 72, 86
safety issues addressed by, 120
time line for approval by, 97
Intent-to-treat paradigm, 16
Interactive Diet Consuction (IDC) CAMP program, 27, 38
Interim questionnaire for participants, example of, 106
International Network of Food Data Systems (INFOODS), 162
Internet service provider (ISP), 34
Intervention studies, 5
influence of genetic factors on body fat storage and mobilization as subject of, 45
Investigators in controlled diet studies. See als• Principal investigators in controlled diet studies
avoidance of overburdening staff as responsibility of, 73
exclusion of prospective participants by, 70
policy on participant absence set by, 70-71
promises made by, fulfilling, 74
protocol modifications by, 68, 72-73
protocol procedures tested on, 63
safety monitoring committee provided participant information by, 64
wholesomeness of food as responsibility of, 72
Interview forms, documenting, 265
Interviewer checklist for explaining
study conditions to participants, 67 sample, 68
Invasive procedures during controlled
diet studies, 63
Inventory, computer applications for, 33
Iron fortification in cereals, 165
Isotopically labeled plant products, 189190

J

Joint Commission on the Accreditation of Healthcare Organizations
(JCAHO) standards on quality assessment, 332-333
Journals
food analysis methods and results, 356
trade and professional, 191, 193

K

Key nutrients, 343-344
Kitchens, research, 290-298, 323-333
adapted for studies with children, 137
aisle space in, 292
contingency plans for equipment in, 148
counterspace in, 292, 294
countertops of, 295
formula diets prepared in, 214
layout of, 291-294
lighting in, 297-298
managed by senior research dietetic technician, 303, 306
maximizing efficiency of, 149, 294, 309
for multicenter studies, 398
for multiple concurrent studies, 315
planning, 290-292
production areas of, 291
security issues for, 298
use of students and volunteers in, 151
ventilation and climate control of, 294-295, 297
wall and floor surfaces of, 295
work areas in, 292-295
work priorities in, 298
waivers of food purchasing policies for, 191
Kool-Aid ${ }^{\circ}$ soft drink mix, numient content of, 165

L

Labeling samples, 15
Labels
bar code, 30, 186
food, 31
inventory, 33-35
for meals delivered by courier, 198
temperature-sensitive, 189
Laboratory
for composite assays, 356-358
for food analysis, 362-363, 399
for multicenter studies, field center vs centralized, 392-394
turnaround time for processing in, 376
Laboratory error. See als• Variance convibuting to overall variance, 374 375
defined, 369
minimizing, 368
Laboratory expenses of controlled diet studies, budgeting, 153
Laboratory mean, 369
Laboratory performance, limits of acceptability of, 370-371
Laboratory staff processing participants' samples, communication with, 106, 376
Lactating women
controlled diet studies on, 120, 122
water intake of, 233, 234, 236
Lard, 225, 226
Linear programming
to calculate conventional food research diets, 176
to calculate formula diets, 26,176
in design of defined diets, 37
Linkage analyses, 47, 56
Linkage disequilibrium
defined, 56
markers in, 49
Lipoprotein measurement, 371-375
Liquid formula diets. See als Formula diets
appropriate uses of, 6, 142
archiving samples of, 230
bomb calorimery to measure energy value of, 330, 343
compliance problems with, 214
cost effectiveness of, 150
duration of use of, 213
sample protocol description for, 312
texture of, 228
used with solid foods, 214
volume and number of daily meals for, 213
water intake in, 237
Local area networks (LANs), 34
Luteinizing hormone (LH)
BBT to test concentration of, 113
ovulation kits' use of, 112
peak of, 113
production of, 110-111
surges during ovulation of, 112, 115

M

Macronumients in formula diets, 214
Malaise caused by invasive proce-
dures, 63
Masking in controlled diet studies. See Blinding processes and participant identities

Mass mailings as recruitment strategy, 81-84
Meal plan for children, adding snacks to, 133
Meals
behavior of families eating on site, 137
delivery to participants of, 99, 197206
emergency, 205
ethics of providing participants with wholesome, 72
for liquid formula diets, 213
load test, 143
for multicenter studies, 396
reassessed after tray checks, 105
skeleton, 196
task analysis of production time for, 309, 313-314, 316-317
take-out. See Take-out meals
Measurement errors, 350
Meat substitute products, 190
Medical questionnaire for prospective participants, 90-91
Medications during controlled diet studies
for children, 138
ethical considerations for, 70, 74
extraneous nutrients from, 209
Menarche, 109
Menopause
defined, 115
screening of prospective participants for, 120
signs of, 115-116
surgical, 116
Mensual calendars, 113-114, 119, 120
Mensurual cycle
BBT to monitor, 113
controlling for, 118
data collection affected by, 119
dietary effects on, 119
educating study participants about, 120
effects of age on, 110
effects of vegetarian diet on, 118
effects on physiologic systems of, 116-117
electronic devices to monitor, 113
follicular phases of, 110-111, 113, 116, 118-119
limits on blood collections from women having regular, 120
luteal phase of, 110-112, 116-117
normal, 109-110
postmenopausal, 116
study design considerations of, 118119
Mensurual phase
data obtained to define, 119
identification methods, 110-115
studies' methods of identifying, 117118
studying subjects in specific phase of, 120, 122
Mentally ill or retarded persons as participants in controlled diet studies, 65
Menu composite, 354
Menu cycle
composite of, 345, 354
defining, 395
fecal collections timed for, 245
length of, 148
numient summaries for, 264-265
reviewing, 175
rotation of, 143, 146
MENu Database Planning Software
(Database Manager), 27, 38, 166
Menu planning
computer-assisted, 25-27
for multicenter studies, 395, 399, 401-402
Menus
adapted for children in controlled diet studies, 129-130
assessment of usual dietary intake in designing, 256
computer applications for preparing, 32-34, 36, 37, 166-172
food subsets to develop, 172-175
master, locumenting, 265
master, unmasked kitchen, 200, 201203
nuvient content lists for, 170
in pilot studies, 149, 344
prefeeding validation of, 342,343345
provided to participants prior to initiating participation, 98-99
reviewing and verifying composition, 175, 274
sample participant form for, 265, 274
staff mying out, 151
24-hour, 142
Metabolic balance diet, 144
fundamental principle of, 144
Metabolic balance studies, 242-249
adaptation to diet in, 243
equations used in, 242-243
example of procedures and outcomes of, 246-248
food consumption teclmiques for, 200
food preparation for, 244
fundamental components of, 242
liquid formula diets in, 142
nitrogen, 245-249
number of participants in, 243
nukient content of, 20
practical considerations for, 243-246
sources of errors in, 243-246
stable isotopes used to enhance, 252
24-hour menu for, 142
uses of, 240

Metabolism
intermediate, 238
modeled using stable isotopes, 250
physiologic pools in, 239, 240
Metabolizable energy content, calculating, 243
Method bias, 350, 356-357
Methylene blue dye as intermittent marker, 386
Mifflin-St Jeor equation for resting energy expenditure (REE), 256, 260
Migrant studies, 2
Minerals
balance study of, in elderly males, 246-248
deionized water used in studies of, 185, 186, 207-208
differences in soil content of, 190
effects of cooking and handling foods on their, 168
elimination of unabsorbed, 238-240
environmental contamination of, 244
extraneous nutrients from, 207
in formula diets, 216
formulating research diets for content of, 158-159
supplements containing, 196, 207
from water, 237
Minimum detectable difference, 14
Minorities, recruiting, 85
Moisture content of foods for assay, nurient values affected by, 363-364
Morale of participants, 102, 147-148, 197. See alse Incentives for participants
Muffins
as pre-prepared foods, 399
as unit foods, 260, 278-279
Multicenter controlled diet studies, 390403
activities of, 397-398
centrally prepared diets for, 391
close-out period of, 398
costs of, 394, 395, 397
examples of, 390-391
implementing, 398-402
organization and operation of, 392394
planning, 395-398, 401-402
quality control in, 397
scientific rationale for, 391-392
uniqueness of, 402
Multiple Risk Factor Intervention Trial (MRFIT), 77
Multiplicity in tests of significance, 17-18

N

National Agricultural Library
software lists maintained by, 35
Web site of, 37

National Center for Health Statistics (NCHS), growth charts of, 133
National Cholesterol Education Program (NCEP) Guidelines to compare fat type and amount to dietary goals, 156
National Cholesterol Education Program (NCEP) Laboratory Standardization Panel, 370-371
National Health and Nutrition Examination Survey III (NHANES III)
growth chart data of, 133
intake records of, 21
Naional Health and Nutrition Examination Surveys, estmates of numient intake in, 156
National Heart, Lung, and Blood Institute (NHLBI), DELTA and DASH studies sponsored by, 390
National Institute of Standards and Technology, 341
Naional Instutes of Health (NIH) guidelines for inclusion in funded research, 85, 109, 126-127
Naional Nuwient Databank (NND), 166
National Sanitaion Foundaion, 284, 295
Nationwide Food Consumption Survey, 21
Net energy, calculaing, 243
Networks, computer, 33-35, 37
News stories for recruitment of parricipants, 83
Newsletter advertising as recruiment strategy, 81-84
Newspaper adverising as recruiment strategy, 81-83
Nitrogen content
of food sample, 358-359
of urine to assess dietary compliance, 382
Nitrogen loss, sources of, 245-246, 247-249
Nitrogen-to-protein conversion factors, 157
Noncompliance, parricipant
by children, 138
documenting, 265, 270, 277
example of managing, 101
in multicenter studies, 401
signals from participant about, 105
Numient balance, calculang, 242
Nurrient Data Base for Standard Reference (SR-12). See USDA Nurient Data Base for Standard Reference (SR-12)
Nuırient database, 20, 166-167
information to include about, 27
Nurient diges sibility, apparent and wue, 242
Nurient intake
calculating, 19-20, 155, 165, 244
current US population, 156
determining, 156-158
different from study goals, reasons for, 138
measurement of, errors in, 244-246
medications as source of, 138
report of daily, 24
software for calculaing, 19-27, 165
standard for adequacy for children of, 133
for water, 235-236
Nurient intake questionnaires, single vs muluple, 301
Nuwient parameters, assay profiles for, 344, 364
Nuwient summary, documenting, 264265
Nurient-calculation software, 20-25, 165-169
developing in-house, 25
diet list file in, 167, 169
edit checks for data enty in, 21
entering demographic information in, 21
entering food amounts in, 21
entering food descriptions in, 20-21
food composition file in, 167, 169 , 171
generating nutrient value using, 167
merging diet list file and food composition file for, 167,169
moisture/fat gain/loss file for, 167 , 171
nutrient retention file for, 167, 171
production sheets downloaded to word processor from, 32
recipe calculation in, 23,167
report of daily nutrient intake in, 24
selecting, 27
sort features of, 24
summary report from, 167
Numient-nurient interactions, 7
Nurients
calculating dose of, 7, 271-289
controlling extraneous sources of, 6 , 164, 207-209
lack of accurately analyzed data for, 159
movement in body of, 239, 244
supplemented with vitamins and minerals, 156
variance in amounts of, 337
Nutivion, interaction between genes and, 44
Nution Data System (NDS) (Nurition Coordinating Center), 38, 166
numients for cooked ingredients included in, 23
Nutivion history for prospective participants, 92
Nutrivion Labeling and Education Act (NLEA) (1990), 338, 356
Numition research manager
position descripion for, 305, 311
research diet tasks of, 303, 306, 307
responsibilimes of, 303
sample effort estimation worksheet for, 316
ume analyses for research diet tasks of, 303, 306, 307
Nuwitionist III, recipe nuwients analyzed by, 278-279, 287-289
Nukitionist IV (First Databank) for research diet design, 166
Numitionist V (First DataBank), 38
for research diet design, 27
Nuritive Value of Foods (Home and Garden Bulletin 72), 21

0
Obesity
genes influencing, 44-45, 51
permission for participants in studies of, 62-63
Observational studies, 3, 5
Off period of diet study, 144
Office for Protection from Research Risks (OPRR), 64
Oils
customized production of, 225
in formula diets, 225-226
principal fatty acids of, 227
specialty, 227
Older adults as paricipants, recruing, 85-86
Oligonucleotide ligation assay (OLA), 48-49, 56
Oral contraceptives (OCs)
caffeine clearance affected by, 117
folate, B-12, B-6, and riboflavin increased for women taking, 159
screening prospective participants for use of, 120
types of, 115
Orientation to controlled diet studies
of participants, 98-99
of staff, 98
Osmolality, 219, 221, 245, 381
Outcome data
access of data and safety monitoring committee to unblinded, 65
interpretaion of, 120
Outcome variables, selecting, 6-7
Outliers, data, 17
Outparient conrolled diet studies
children in, 126
design elements classification guide for, 300
es imating energy experiments, 146
food safety issues for, 189, 196-197
food selection for, 146, 204
levels of dietary control and costs of, 151
maintaining body weight during, 146
planning considerations for, 146
protocol intensity ranking guide for, 301
reasons to consider, 146
sample protocol description and
worksheet for, 312, 313
staffing for, 296
rend toward, 297
Ovulation
confirming occurrence of, 113
detecting, 110-111, 113
documenting occurrence of, 110
hormonal surges during, 113
Oxygen stable isotope ${ }^{18} \mathrm{O}, 249-250$

P

Para-aminobenzoic acid as marker, 245, 381, 383, 384
Parallel-ann design in controlled diet studies, 4, 10-13
consideration of menstrual cycle phases in, 119
sample size for, 12,14
variation among participants used in, 15
Parricipants in controlled diet studies, 76-95
accommodang special needs of, 93-94
accommodaing work schedules and routines of, 146
assigning study numbers to, 375
assignment of, 4, 15-16
in balance studies, 243
burden of, factors in, 63, 70, 74, 89
children as, $6,22,65,67-69,72$, 126-140, 161
common problems of, 204-207
compliance of. See Compliance issues in controlled diet studies
confidentiality of. See Confidentiality issues
consequences for eating meals at study site for, 69
as coproducers of services, 331
demographic subgroups of, 6
dependent people as, 67-68
disclosing purpose of study to, 69
disease status of, 6
disseminating information to, 102
eating techniques for, 200, 204
economies of scale for number of, 147
elderly, 161
eligibility criteria for, $69,72,77-80$, 88-89
emotional problems and stress of, 71, 74
ethical obligations to, 70-72, 74 ethnic groups as, 22,85
exclusion criteria for, 54, 70, 91
exit interviews of, 73-74, 397
exit questionnaires for, 106-107
explanation of study to, 68-69, 91, 97, 98
facilities at home for storing and
heating food of, 93
faculty as, 73
food differences for, 180
food preferences of, 92, 129, 161, 329
on formula diets, working with, 213214
free-living. See Outpatient controlled

diet studies

habitual lifestyle information about, 91-92
heating food of, 93
identifying target groups of, 85, 86
illness of, 206
individualized schedule flow sheets for, 315,318
information provided to, 106, 329
inparients as, 86
interaction patterns of, 92
interim questionnaire for, 106
managing, 96-108, 120, 122
mediang issues among, 100
medical questionnaire for, 90-91
menopausal status of, 116
mentally ill or retarded persons as, 65
minorities as, 85
morale of, 102, 147-148, 197
motivation of, 71, 73-74, 86, 102
non-English-speaking, assistance for, 67, 85
number in sample of, 6, 10-12, 14-15
nutivion history for, 92
older adults as, 67, 85-86
orientation of, 98-99, 397
payment of. See Payment of participants in controlled diet studies
physical activity questionnaire for, 93
in pilot studies, 149
prisoners as, 65
privacy for, 72,74
"professional, " 86
recnuing, 54-55, 64, 68-70, 76-87
refrigerator or freezer requirements for, 146
regular interviews to reveal problems with foods, 105
reporing lifestyle changes of, 99, 100
requests for changes in protocol by, 99-100, 102
response to reament of, 375
responsibility for welfare of, 62, 64, 65, 88
results of study given to, 398
rights of, 55, 65, 73-74, 101
safeguarding information about, 375376
satisfaction of, quality service to ensure, 330,332
screening of, 69-70, 77, 80, 87-95,
119-120, 122
screening ques onnaire for, 120-121
selecting, 6-7, 91-94, 96
students as, 73
system for identifying and blinding, 15
termination from study of, 65, 67, 69,
71, 101, 401. See als@ Dropouts
ravel requirements and days away from study of, 70-71, 93-94
rust between staff and, 99, 324
variance among and within, 15
women as. See Women as participants in controlled diet studies
Patient Satisfaction Questonnaire (GCRC), 332
Payment of participants in controlled diet studies
budgeting costs of, 153
for children, 136
compliance and retention improved by, 120
ethical considerations of, 71-72
IRB assessment of appropriateness of, 72,86
wed to sample collections, 72, 102
"Pending IRB" document, 64
Permanent study file, information in, 264-265
Photographs of paricipants, use of, 74
Physical activity questionnaire for prospective participants, 93
Physician referrals as recruiment strategy, 81-84
Physicians
as coinvestigators or consultants in controlled diet studies, 63
in safety monitoring committees, 64
Phytic acid, 190
Pica, 209
Pilot studies
advantages of, 150
to check homogenization of composites for assay, 355
defined, 149
DELTA study, 398
evaluation of, 150
of participant recruiment and screening procedures, 94
reasons for conducting, 149, 344
Pilot test of protocol, 97
Planning controlled diet studies, $10-15$, 142-154
contingencies in, 107
ethical considerations in, 62-68, 122
feeding phase consideraions in, 145
forms for, 265-269
validation phase assays in, 265
Plasma lipids and lipoproteins
candidate genes regulating, 50-51
dietary and genetic influences on, 50-54
Polyethylene glycol (PEG) as continuous marker for fecal collection, 386-387
Polymerase chain reaction (PCR)
amplification, 48
defined, 56
Popcom, substutions for, 163
Posters as recruiment strategy, 81-84
Potassium excretion compared with intake to assess dietary compliance, 382
Poulry and meats
HACCP safety and sanitation measures for, 187-188
purchasing, 181, 187
Power in calculaing sample size, 14 , 52-53, 118-119, 391
Pregnancy
cessation of menses as first sign of, 110
reported to study staff, 120
screening of prospective participants for, 120
Pregnancy testing, 120
Pregnant women
controlled diet studies on, 120, 122
water intake of, 233, 234, 236
Principal inves gators in controlled diet studies
knowledge about poten ial conflict of interest of, 73
masking techniques and, 200
problems in recruiment and implementation addressed by, 72
relationship with professional nutrient staff of, 302
requests for change in protocol addressed by, 100
roles and supervision of, 62, 63, 74, 97, 302
salary for, 153
Prisoners as participants in controlled diet studies, 65
Product label information, 21
Production sheet for staff workstations, 265, 273
Professional organizations
code of ethics by, 62, 65
list of, 193
Progesterone levels
serum, 112
of women on vegetarian diets, 118
Progesterone production, 111
ProNutra Nutrient Analysis System for Metabolic Studies, 27, 38, 166
Prospective cohort studies, 2, 3
Protein
egg, 222
inverse rela ionship of blood pressure level and amount of dietary, 391
milk, 222-223
sources of, in formula diets, 222
soy, 223
whey, 218, 223
Protein content of food sample, 358-359
Protein status revealed in nitrogen balance studies, 247-249
Protein substitute products for meat, 199
Protein values in databases, 157
Protein-free food recipes, 215-218
Protocol for controlled diet studies
adapted for children, 127, 130-136, 138
demographic information for, entering, 21
detailed, 375
diet assay as part of, 342-346
documentation and updates for, 264
feasibility of, 7
flexibility within, 99
fluid intake considerations in designing, 237
intensity ranking guide for, 301, 302
for multicenter studies, 397-398, 401
pilot test of, 97, 149-150
procedures that minimize effects of physiological variations in, 376
psychological constraints imposed by, 132
recording deviaions from, 206
requests for changes in, 99-100, 102
staff meeting for review of, 97
staffing based on complexity of, 299, 309, 313-314
suitable substituons within, 328-329
Provisional Table on Retention of Numients in Food Preparation, 158
Psychosocial factors in selecting participants, 91-94
Publishing results of controlled diet studies, 320, 322, 397, 398
Puddings as unit foods, 260
Puddings in solid formula diets, 214 basic, 215
protein-free comstarch, 216
protein-free wheat starch, 215-216 solid fat in, 226

Q

Quality assurance for study meals, 72, 399
Quality assurance program, 315, 320, 321
Quality control
of assays, 358
of chemical analysis, 346, 348-350
of formula diets, 230
of laboratory, 368-378
for multicenter studies, 397
for multiple concurrent studies, 315
Quality control charts (QC charts), 360361
sample, 369-370

Quality control checklist for tray contents, 196, 275
Quality control forms, 265, 274-276
Quality control material (QCM), 358360
Quality control program for staff performance, 323-333

R

Radio advertising as recruitment strat-
egy, 81-83

Radioactive isotopes
differences between stable isotopes and, 250
tracers using, 189-190
Radio-opaque pellets (ROP) as intermittent markers, 386
Randomization procedure in assigning participants, 15-16, 72
Recipes, 270-289
calculated in nutrient calculation software, 23, 167-168, 171
calculation of, individualized, 214, 220
computer applications for printing scaled, 31-33
elements of, 270-271
evaluated and revised during pilot studies, 149-1.50
for formula diets, 212, 228, 230
in perruanent study file, 265
quality control checks for, 271
weights of ingredients in, 272-274
Recipes, food
for baked chicken breast, 287-288
for banana bread, 282
for basic muffin loaf, 285
for basic pudding, 215
for chocolate drop cookies, 286
for East Indian cauliflower, 286-287
for ginger thins, 286
for Greg's herb butter, 280
for Greg's low-sodium vinegar and oil salad dressing, 280-281
for lemon baked chicken, 288
for lemon cookies, 285-286
for Liquid Formula B, 218-219
for Liquid Formula C, 220
for low-salt Salisbury steak, 287
for low-sodium sugar cookies, 281
for macaroni and cheese, 288-289
for oatmeal cookies, 284-285
for pound cake, 282-283
for protein-free cookies, 217
for protein-free cornstarch pudding, 216
for protein-free wheat starch pudding, 215-216
for Shuli's low-protein fruit topping, 279-280
for sponge cake, 283
for sugar cookies, 281-282
for unit oarmeal cookies, 278
for unit muffins, 278-279
Recommended Dietary Allowances (RDA)
comparing nutrient content of research diet to, 264
comparing nutrient intake to, 24, 132, 155
difficulty of meeting some, 155-156
Recruiment meetings for recruiment
and screening, 81-82, 84-85
Recruiment of study paricipants, 76-87, 302
budget considerations for, 81, 153
of children, 136-137
ethical issues in, 64, 68-70
for generic studies, 54-55
goal of, 76-77
incentives in, 86
IRB's role in, 80
modifying, 86
monitoring, 81-82
for multicenter studies, 392
pilot studies of, 94, 149-150
planning, 80-81
revising eligibility criteria based on experience of, 77
of special populations, 85-86
staffing needs for, 80-81, 302
strategies for, 81, 82-85, 161-162
ume required for, 80
weight ranges discussed during, 204205
of women, 85, 119-120
Recruiment plan, 77
Regression to the mean, 13
Regulations for the Protection of Human Subjects (DHHS) (45 CFR 46), 64
Reorder points in inventory, 33
Research diets. See Diet types and Diets, research
Resuicton fragment length polymorphisms (RFLPs), 48, 56
Results of controlled diet studies
generalizability of, 77
reporting, 74
Returriable containers for food eaten off site, 105
Riboflavin as marker of dietary compliance, 382
Risk factors for disease, 2
dietary effects on, 4
Run-in period for controlled diet studies, 12
for children, longer, 135
for multicenter studies, 401

S

Safety monitoring boards
advice about abnormal laboratory values of participants from, 69 oversight role of, 62, 64-65

St Jeor and Bryan diet classification system, 143-144
Saliva samples for menstrual phase idenvification, 112-113
Sample collection, 379-389. See alse Blood collections during controlled diet studies, Fecal collection, and Urine collection
from children, 135-137
effects of hormonal and reproductive status on, 122
of hair and nails, 388
reasons for using, 379
of saliva, sweat, breast milk, and expired $\mathrm{CO}_{2}, 388$
security issues in, 298
staffing needs for, 303
standardizing, 117
tracking specimens as beginning with, 375
visits of outpatient paricipants sched uled by, 197
Sample size for paricipants, 6, 10-12, 14-15
effects of hormonal variaions and mensurual cycles on, 118-119
formulas for calculating, 15
for heritability estimates, 51-54
ways of obtaining sufficient, 391-392
Sampling errors, 350
Saturated Fat Diet, 172-176
Scaling food weights, 24
Scientific evidence
example of lines of, 5
to test diet-disease relationship, 2
Scientific rationale of controlled diet studies, 2-9
Scrape and wash technique of food consumplion, 200
Screening of prospective paricipants in controlled diet studies, 69-70,77, 87-95
of children, 136-137
findings of, factored into study orientation and education for compliance, 104
first, second, and third stages of, 87, 88
food- and diet-related issues during, 92-93
for formula diet protocols, 213
habitual lifestyle of paricipants examined during, 91-92
for hormonal and reproductive status, 120-122
interaction patterns of paricipants examined during, 92
for mulucenter studies, 396
pilot studies of, 94
pool size for, 89,91
staffing needs for, 302
staggering, 80
strategies for collecting information during, 89
study disclosure during, 91
visits for, 87-88, 396
Seasonal adjusument in controlled diet studies, 17
Seasonal effects on nutrients, 148, 337
Segregation analyses, 47, 56
Selenium studies
of effects, 159
of metabolism, 252
Senior research dietetic teclmician
posimon descripion for, 310
responsibilities of, 303, 306, 310
ume analysis for dietary tasks of, 309
Serum hormone levels, 112, 119
Service, quality, to guarantee paricipant satisfaction, 330, 332
Seven Step Approach to conswucuing
quality control program, 324-327
Siblings in generic studies, 45-46
Snacks
caloric distibution among, 160
for children added to meal plans, 133
hunger problems solved by, 204
for students, 161
Sodium balance
affected by mensual cycle, 116-117
affected by sweaing, 244
variance in, 340
Sodium content
of bouillon, 213
of chewing gum, 208
of foods and toothpaste, 164-165, 209
Sodium levels as indicator of dietary compliance, 381-382
Solute load of formula diets, 219, 221
Soy products, 190
in formula diets, 222, 223
Specimen banking, 377-378
Spreadsheet program
used for matrix arithmeric and linear or integer programming, 26
used to analyze food costs, 33,39
used to generate food production sheets, 30
used to generate menus, 33,37
used to generate scaled recipes, 33
uses in controlled diet studies, 28
Stable isotopes. See alse individual isotopes
comparmental modeling with, 249250
differences between radioactive isotopes and, 250
safety issues for, 251
uses of, 240, 251-252
Staff of controlled diet studies, 299-322
access to participant information by, 72
accommodation of children's needs by, 137
additional support for, 315
as authors of scientific papers, 74
budgeting, 152-153
conflict of interest of, 72-73
duty schedules for, 270,271
ethical obligations to, 72-74
excluded from participation in study, 73
explanation of study requirements to participants by, 69
handling of biohazardous materials by, 73
hiring and firing, 73
for inpaient vs outpament studies, 298
labor costs of, 150-151
morale of, 331
for mulucenter studies, 398
for muliple dietary reatments, experienced, 147
offices of, 296, 297-298
orientaion of, 98
part-ime, 73, 150
pilot study duries of, 150
planning, 151, 299-302, 313-315, 319
position descriptions for, 305, 310312, 315, 320
records of assigned, 147
for recruing paricipants, 80-81
responsibility for welfare of, 62
scheduled to meet needs of protocol, 163-164
shifts for, 315
space and equipment as governing numbers of, 149
witles and descriptions of, 303
raining and in-service education of, $189,320,387,402$
must between participants and, 99
workload of, forms for, 265, 270273
written procedures provided to, 97
Standard reference materials (SRMs), 358
Statical analysis software uses in controlled diet studies, 28-29
Staistics in conrolled diet studies, 6, $10-18,118-119$
Steroidal contraceptives, 115
Stool samples. See Fecal collection
Study design for con rolled diet studies, 1-60, 62-63
adapted for children, 127
improving, for mensurual cycle considerations, 118-119
poten ial for growth problems in, 134 to test hypothesis, 5-6
Subsamples for assays, 347, 354-355
Substuted foods. See Food substutions in controlled diet studies

Sugars
relavive sweetness of, 223, 225
types of, 223-224
Suggestion box for paricipants, 102
Summary statistics, 15
Survey Nurient Database, 21

T

Take-out meals
eating techniques for, 204, 205
food selection for, 146
forms for participants having, 265, 276
packing, in coolers with ice packs, $146,197,328$
packing list of food items in, 99, 197
paricipants assembling items for, 151
requests for, 205
staff directions for safe storage and reheating of, 99
Telephone recruitment strategies, $81-82$
Television adverising as recruitment strategy, 81-83
Termination from controlled diet studies of children, 136
ethical consideraions of, 65,67, 69, 71
of paricipants refusing provided foods, 162, 401
Test diets, mulliple, 17
Thermic effect of food (TEF), 258, 260
Time factors in controlled diet studies, 6
Tobacco, extraneous nutrients in and metabolic effects of, 209
Toothpaste, exraneous numients from, 164-165, 209
Total error (TE), calculaing, 371
Trace elements, 159
Trade organizations for food, 191-192
Trans fatty acids, assays of, 356
Transmission disequilibrium tests (TDT), 49, 56
Tray assembly, 196, 323, 328-329
Tray checks
critical points for, 328
to ensure completeness of meal before delivery, 105, 196
to find uneaten food after rays are retumed, 105
minimining clutter on rays for, 147
quality control checklist for, 196
Tray delivery, critical points in, 329
Trial period of con rolled diet study, 144
T-test comparison of test diets, 17
Twin studies, 2
challenges of, 52-53
HDL metabolism examined in, 51
influence of generic factors on body fat storage and mobilization as subject of, 45
study designs for, 45-46
zygosity determination in, 55
Twins
monozygotic (MZ) vs dizygotic
(DZ), 45, 51, 53
regisiries and national organizations for identification and recruitment of, 54

U

Ulrasound to determine menstrual phase, 113
Unit foods
defined, 198, 271
examples of, 198
in multicenter studies, 401
recipes for, 278,279
Urine, acidifying effects of exercise on, 164
Urine collection
in balance studies, $246,248,249,252$
challenges in making, 379
creatinine as marker to ensure completeness of, 383-384
knowing water intake to estimate completeness of, 237
PABA as marker to ensure completeness of, 245, 381, 383, 384
procedures for, 382-383
sources of error in, 245
in stable isotope experiments, 250
Urine specimens
analyzing, 382
storing, 245
mimed, for free-living participant studies, 245
to track hormone levels, 112
water intake pattern manipulated for timed, 237
US Department of Agriculture (USDA), datasets maintained by, 21-22, 156-157
USDA Nutrient Data Base for Standard Reference (Release 12) (SR-12), 21, 156-157
data for, 160, 336-337
database files for, $166-167$
development of, 336
as origin of nutrient values, 336
portions in, 160
recipe nutrients analyzed by, $280-$ 287
sample recipes using nurient content calculations from, 271, 289
selenium content in, 159
\mathbf{v}
Validation of diet, prefeeding, 344-345
Validation queries for database entries, 24
Variation
analyical, 372, 374
estimates for, 14-15
normal physiological, 371-377
sources of, in laboratory measurements, 369-375
total, 373-374
Vegetarian diet
blood pressure-lowering effect of, 391
effect on mensual cycle of, 118
Vending machine feeding systems, 198
Vitamin A metabolic balance study, 252
Vitamins
effects of cooking and handling foods on their, 168
extraneous numients from, 207
in formula diets, 216
formulang research diets for content of, 158-159
supplements containing, 196, 207
variance in foods' content of, 337

w

Washout periods
length of, 145
pmpose of, 12, 144
Water
allowances for, 232
controlling mineral content of, 185, 186, 207-208, 237
deionized, 185, 186, 207-208, 222, 237
distilled, 222
drinking the rinse, 213, 244, 246, 250
in extracellular spaces vs plasma, 240
intake of, in controlled diet studies, 234-237
providing, in conrolled diet studies, 236-237
typical quantimes and sources of intake for, 232-234
Water balance, regulating, 219, 221
Weighed diets, 143, 307, 309
Weight changes during controlled diet studies, 204-205, 255, 260-261
Weight maintenance during controlled diet studies
dietary techniques for, 260
for mulucenter studies, 396, 401
Weight records of participants, documenting, 265
Weights of common food serving sizes, 182-184
Women
concerns in controlled diet studies of, 122
design issues for studies enrolling, 117-119
hormonal status of, 109-116, 119120
menstrual cycle of. See Menswual cycle
reproductive states in, 110, 120
Women as participants in controlled diet studies, 6, 109-125
exclusion of, 109
NIH mandate for inclusion of, 109 recruiting, 85, 119-120
Word processor uses in controlled diet studies, 27-28, 32, 36
World Health Organizaion (WHO) factorial method to es mate energy needs, 258
World Wide Web (WWW or Web), 34-35

Z

Zinc and copper balance study (NASA), 391
Zinc, copper, and iron balance study, 246-248
Zinc kinetics, 240
Zygosity determination in twin studies, 55

