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The proper planning of a research study and its data man-
agement and analysis involve many decisions. What type of
experimental design should be used? How many participants
should be studied and for how long? How should test diets
be assigned to participants? How should the data be analyzed
when a participant drops out or fails to comply with a pro-
tocol? A statistician can help investigators in the planning
of the study by addressing these questions. This chapter pro-
vides information about the advantages and disadvantages
of different experimental designs and discusses issues re-
lated to sample size and power, study implementation, and
data analysis.

PLANNING THE STUDY

A good experimental study is organized around a set of re-
search questions originating from the scientific objectives of
the project. The purpose of the initial project-planning ses-
sions should be to identify and prioritize the research ques-
tions that the study will be designed to answer. A statistician
should be involved even at this early stage. By participating
in the project-planning sessions, the statistician gains a better
understanding of the scientific issues motivating the study.

Several issues that have an impact on study design and
data analysis can be clarified at the project-planning stage.
These include the major objectives of the study, the variables
and comparisons of primary interest, secondary or explora-
tory variables and comparisons, policy on the exclusion of
data, and the population to which generalizations about the
study are to be extended. Clarifying these issues during the
planning phase will provide a good basis for making statis-
tical decisions throughout the remainder of the study.

Experimental Designs
Once the research questions are clarified, it is time to con-
sider possible experimental designs that could be used to
achieve the study objectives. The statistician should be able
to present the relative advantages and disadvantages of sev-
eral options and discuss them with the investigators. To do
so requires a good understanding of the research setting and
any practical limitations it may have. A statistician gains this
understanding through regular contact with the scientist and
exposure to the study setting—the laboratories, the kitchens,
and the areas where participants and dietitians will be inter-
acting.

Crossover and Parallel-arm Designs
An example of the way in which a statistician might dis-
cuss different options for the experimental design of a
study is given by the comparison between a crossover design
and a parallel-arm design. In a crossover design, each par-
ticipant receives all test diets in a randomized order. In a
parallel-arm design, each participant is assigned at random
to only one test diet; different groups of participants receive
different test diets. Table 2-1 illustrates these two designs.
The advantages and disadvantages associated with each
design are summarized in Table 2-2 and discussed here.

The main advantage of a crossover design is that the
sample size required to detect a given experimental effect is
smaller than with a parallel-arm design. The reduced sample
size is feasible because each participant receives each test
diet; the statistical comparison among test diets is made
using the within-participant error. In a parallel-arm design,
the comparison between test diets is made using the between-

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
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TABLE 2-1

Crossover and Parallel-arm Designs

Crossover design: Each subject receives all test diets in randomized order. This example shows three diets and three periods.

Subjects Period 1 Period 2 Period 3

Subject 1 Diet A Diet B Diet C
Subject 2 Diet B Diet C Diet A
Subject 3 Diet C Diet A Diet B
Subject 4 Diet A Diet C Diet B
Subject 5 Diet C Diet B Diet A
Subject 6 Diet B Diet A Diet C

� � � �
Subject n Diet C Diet A Diet B

Subject Totals Period 1 Period 2 Period 3

Diet A n/3 n/3 n/3
Diet B n/3 n/3 n/3
Diet C n/3 n/3 n/3

Parallel-arm design: Each subject receives only one test diet. Only one time period is required.

Diet A Diet B Diet C

Subject 1 Subject 2 Subject 3
Subject 4 Subject 5 Subject 6
Subject m-2 Subject m-1 Subject m

TABLE 2-2

Crossover and Parallel-arm Designs: Advantages (A) and Disadvantages (D)

Study Feature Crossover Design Parallel-arm Design

Sample size A Smaller D Larger

Duration of study D Longer A Shorter

Use of facilities and resources A More evenly distributed across time D Effort concentrated in a shorter time period

Expectation of subjects D Requires greater commitment A Requires less commitment

Design considerations A Balanced randomization
D Not suitable when carryover

effects are expected
D Low % dropouts required
D Susceptible to confounding from

Period X Test Diet interactions

A Balanced randomization
A No adverse consequences of carryover

A Moderate % dropouts acceptable
A Free of confounding from

Period X Test Diet interactions

Data analysis D More complex A Less complex

participant error, which is generally larger than the within-
participant error. Table 2-3 shows an example of sample size
calculations for a diet study having either a parallel-arm or
a crossover design. This will be discussed in more detail later
in Selection of Design.

Counterbalancing the crossover design’s advantage of
reduced sample size are several considerations that add to
its complexity. Because each participant must be given all
of the test diets, the participants in a crossover design must
be enrolled for a much longer period of time than in a
parallel-arm design. In addition, the crossover design relies
on balance to partition the effects of time period (see Table

2-1) from the effects of test diet. When a participant drops
out before the study is finished, that balance is threatened.
Therefore, well-worked-out strategies for participant reten-
tion should be incorporated in the protocol of a crossover
design.

If the crossover design is to retain its increased effi-
ciency relative to the parallel-arm design, the response to a
diet given in one test period should not affect the response
to diets given in subsequent test periods (referred to as a
carryover effect). Data from prior or pilot studies can iden-
tify the length of time required for the measures of interest
to stabilize under test diet conditions. One strategy often

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
to Design and Management", American Dietetic Association, © 1999.
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TABLE 2-3

Example of Sample Size Requirement for a Parallel-arm Design Compared to a Crossover Design

Minimum Detectable Difference
Total Cholesterol (mg/dL)1,2

Two-group parallel-arm design
Total number of subjects

Two-period crossover design
Total number of subjects

6.53

8.0
10.0
16.0

1563

102
71
27

514

34
22
9

1For 80% power with one-tailed � � 0.05:
2 2the variance calculation for the parallel-arm designs uses: r � r � 89.3 � 173.7 �among within

2263.0; the variance calculations for the crossover designs uses: r � 173.7.within
2These estimates were derived from data reported in Kris-Etherton et al (12).
3For number of subject per group, divide total in column by 2. Each group is assigned one test diet.
4Each subject experiences both test diets in random order.

FIGURE 2-1. Schematic of a two-period crossover design.
Two groups of subjects are treated with hypothetical diets A
and B. Total plasma cholesterol is measured at the
beginning and/or end of each study period.

employed to minimize the carryover effect is to include in-
terim periods, known as washout periods (Figure 2-1), be-
tween test periods. The purpose of the washout period is to
allow each participant’s measurements to return to a baseline
level before the participant begins the next test diet. Mea-
surements taken at baseline can be used to assess carryover
effects. Jones and Kenward (1) offer a more technical treat-
ment of crossover designs and carryover effects.

Washout periods can be designed in one of two ways.
This period can serve as a ‘‘break’’ from the experimental
regimen during which time the participant’s diet is not under
experimental control. Alternatively, the participants may all
be fed a standard diet such as one following the Dietary
Guidelines for Americans (2), or the National Cholesterol
Education Program (NCEP) guidelines (3). Another strategy
for minimizing carryover effects does not make use of a

washout period. Rather, the test diets follow each other in
sequence without a break, and the test diet periods are long
enough so that the endpoint measurements are not influenced
by the previous diet. This strategy would be employed when
there is no interest in the values of variables at the beginning
of each test diet period.

Prior to the first test period, feeding studies can also
incorporate a run-in period (Figure 2-1) during which the
participants experience the protocol of the study. A run-in
period helps investigators achieve several objectives impor-
tant to the successful conduct of the study: (1) familiarizing
participants with the feeding protocol used during the study;
(2) allowing participants who discover they cannot tolerate
the protocol to drop out prior to randomization; and (3) al-
lowing participants to achieve a baseline value of the mea-
surements of interest while on a common diet. The specific
diets fed to the participants during the run-in period and the
washout period, and the possibility that participants’ diets
are not under experimental control during these periods, are
important issues that should be discussed among scientists
and the project statistician.

In comparison with a crossover design, the parallel-arm
design offers a relatively straightforward means of com-
paring the response to a set of test diets. However, there are
two important issues that must be addressed with the
parallel-arm design. First, the random assignment of partic-
ipants to test diets must be done with care in order to ensure
that the groups have a similar profile with respect to key
variables prior to the test period. This is discussed in more
detail later in Randomization. Second, because of the larger
sample size requirement of the parallel-arm design relative
to the crossover design, some parallel-arm designs will re-
quire more participants than can be processed at once at any
one research facility. It thus may be necessary to conduct the
parallel-arm design in blocks, or replicates of the design. The
composition of the blocks must be carefully considered.
Each block should contain a complete replicate of the design
(that is, all of the test diets under consideration in all of the

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
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different orders) and the randomization of participants to test
diets should be balanced within each block. Blocks of the
design can be conducted by different facilities, as is done in
a multicenter study, or by the same facility over a period of
time.

Designs to Avoid
Every statistician’s nightmare is the confounded design. This
is a design in which it is not possible to distinguish between
a response to treatments, such as a set of test diets, and some
other factor in the design. An example of a confounded de-
sign is a crossover design in which all participants receive
Diet A during test period one, Diet B during test period two,
and Diet C during test period three. In this design, the effect
of test period is indistinguishable from the effect of diet. A
second example of a confounded design is a parallel-arm
design in which females receive Diet A and males receive
Diet B. In this second example, it is not possible to distin-
guish between a diet effect and a gender effect. Confounded
designs produce uninterpretable results, and there is no mir-
acle of data analysis that can remedy the problem. It there-
fore is in everyone’s best interest to discuss potential con-
founding factors with the statistician on the research team
and to make sure that the critical factors are identified and
accounted for in the design.

Control Groups
In feeding studies, the definition of a control is problematic.
What is a control diet? Is it the participant’s free-living diet?
Is it the NCEP Step One diet? (3) The only way a statistician
can help to answer this question is to enter the discussion
about the objectives of a proposed feeding study. Do the
scientists want to examine the response of a test diet as a
difference from a baseline value? If so, then perhaps a stan-
dard reference diet can be used to establish a baseline. Are
the scientists interested only in comparing a set of test diets,
using as measurements only the values at the end of each
test diet period? If so, then perhaps there is no need for a
reference diet.

However, the strategy of not using a reference diet
should be adopted with care. Seasonal effects, if there are
any, become critically important for crossover designs as
well as for parallel-arm designs conducted in blocks over
periods of time. For example, effects of increasing sunlight
exposure from winter to summer must be addressed in
studies that examine calcium and vitamin D metabolism.
Designs can become unbalanced because of dropouts or
slightly uneven numbers in the original demographic cate-
gories. Including a reference diet in these designs can permit
a seasonal adjustment in the comparison among test diets.

Including a control group in the design is important
when participants are recruited from population extremes.
For example, consider a study in which participants in the
95th to 99th percentile for total cholesterol are recruited. In
this hypothetical study, there is a test diet that is thought to
lower total cholesterol. Plasma total cholesterol will be mea-

sured at baseline and after participants consume the test diet
for a specific time period. To provide a valid estimate of the
cholesterol-lowering effect of the test diet, a proportion (usu-
ally half) of the eligible participants should be assigned at
random to a control diet. This is because participants whose
first blood sample puts them in an extreme percentile group
will tend to have a second measurement closer to the popu-
lation mean even with no intervention at all. This effect is
known as the regression to the mean. Without a control
group, the regression to the mean effect can be misinter-
preted to be a treatment effect.

The true effect of the test diet is the net difference be-
tween change in total cholesterol for the group given the test
diet and the change in total cholesterol for the control group.
(See Figure 2-2 for an illustration of this net difference.)
Davis (4) discusses the regression to the mean effect in lipid
studies and gives suggestions for ways in which this effect
can be reduced, such as using the mean of several baseline
blood samples to classify participants prior to a dietary in-
tervention.

FIGURE 2-2. The regression-to-the-mean effect. In this
hypothetical example, total plasma cholesterol of a
treatment group and a control group is measured at baseline
and at the end of a diet period. Participants are considered
eligible for the study if their baseline total cholesterol is in
an extreme percentile range relative to the population. The
regression-to-the-mean effect causes the post-treatment
value of the control group to come closer to the population
mean than to the baseline value with no intervention at all.
The effect of the treatment is the net difference between the
treatment group response and the control group response.
The final estimated effect is: (250–210) � (250–230) � 40
� 20 � 20 mg/dL.

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
to Design and Management", American Dietetic Association, © 1999.
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Sample Size and Power
How many participants should be used in the research study?
This is a crucial issue that will be closely examined by the
institutional review board and the agency providing the
funds for the research study. The institutional review board
must consider two mandates that influence the choice of
sample size: (1) the benefits of the research study must jus-
tify the potential risk to the participants, and (2) human par-
ticipants should not be exposed to an excessive amount of
risk. On one hand, a study with an inadequate number of
participants exposes these participants to an unjustifiable
amount of risk, because the study will fail to meet its objec-
tives. On the other hand, a study with more participants than
are needed to address the research questions exposes some
participants to an unnecessary amount of risk. Therefore,
considerations of human safety require the investigators to
justify that they are including an adequate number of partic-
ipants, but no more, to meet their research objectives.

From the perspective of the funding agency, the cost of
processing each participant through a feeding trial also sug-
gests that the number of participants should be the minimum
that is adequate to address the research objectives. With
these pressures in mind, the estimation of sample size should
be carried out with great care and with the highest quality
of information available.

The best number of participants for a feeding study is
influenced by several factors: (1) the study design; (2) the
size of the experimental effect that the investigators wish to
detect; (3) the desired level of statistical power and signifi-
cance; (4) the amount of variation within and among partic-
ipants; and (5) the number of dropouts and the level of com-
pliance for participants in the study. The statistician on the
research team should compute and illustrate the statistical
properties of the range of sample sizes and circumstances
under consideration.

The statistician can also use previous data from similar
studies in order to determine sample size requirements for
different candidate designs. If no such data are available
from either the research team or the published literature, it
may be necessary to conduct a pilot study.

Selection of Design
The decision about sample size is inseparable from the de-
cision about design. For example, a crossover design will
generally require fewer participants but greater time com-
mitment per participant than will a parallel-arm design. (See
the earlier discussion in Experimental Designs.) Table 2-3
shows sample sizes that were computed during the planning
stages of a feeding study. These estimates were calculated
so that the investigators could make an informed decision
between using a two-period crossover design and a
parallel-arm design. Using estimates of within- and among-
participant error from a previous study of a similar partici-
pant population, the calculations showed that a total of 102
participants would be required for a parallel-arm design (51
participants in each of two groups) in order to detect a min-

imum difference of 8.0 mg/dL total cholesterol between the
two test diets at 80% power and 5% significance. The same
statistical characteristics could be achieved in a crossover
design with 34 participants, with each participant receiving
both test diets in randomized order.

Size of Experimental Effect
Sample size requirements also depend on the size of the
effect that the investigators want to detect with high proba-
bility. This effect size, often called the minimum detectable
difference, is the smallest difference between means (eg, the
mean response on each test diet) that the investigators would
consider important. The criteria of ‘‘importance’’ must be
determined from the clinical or research perspective. For ex-
ample, consider the study discussed in Selection of Design,
in which 8.0 mg/dL total cholesterol was determined to be
the smallest difference between test diets that was important
from a clinical perspective. A parallel-arm design with 156
participants would be able to detect a difference of
6.5 mg/dL total cholesterol with high probability. This dif-
ference, although statistically significant with 156 partici-
pants, might not be considered clinically important in the
context of this hypothetical study.

The objective in computing sample size is to provide a
match between an effect size that is meaningful to the in-
vestigators and the effect size that can be detected in the data
analysis as statistically significant. It is not possible to esti-
mate sample size without a criterion for effect size; the
p-values generated from a study without any criteria for
sample size are meaningless.

Statistical Power and Significance
Power refers to the probability of detecting a significant ef-
fect if one exists. Having high power, such as 80% or 90%,
to detect a significant effect means that a correct conclusion
is likely to be made about whether a dietary variable causes
a change in an outcome variable such as blood pressure or
blood lipids. The statistical properties of power and signifi-
cance are components in the calculation of sample size.
These properties determine the probability that the study re-
sults are truly representative of the entire reference popula-
tion. Hypothesis testing is the basis of power and signifi-
cance, but a detailed description is beyond the scope of this
chapter. A very clear explication of these concepts can be
found in Zar (5), Meinert (6) and Friedman, Furberg, and
DeMets (7).

Variation
A reliable estimate of sample size depends on good estimates
of variation for the response variables of interest. Data from
previous studies or from a pilot study can be used to estimate
variation. The participant population from previous studies
should be as similar as possible to the participant population
in the proposed study.

It also is critically important to choose which estimate
of variance is the correct one for each sample size estimation.

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
to Design and Management", American Dietetic Association, © 1999.
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For example, the variation among participants is used in a
parallel-arm design, and the variation within participants is
used for a crossover design. If the value of an outcome vari-
able will be estimated from an average of several samples
(for example, the mean total cholesterol from blood samples
taken on three consecutive days), then the sample size for-
mula should incorporate the variance of this mean.

Resources
Computational formulas for sample sizes vary according to
the design and the type of variables to be measured. Reliable
formulas and tables for sample size calculations can be found
in Kraemer and Thiemann (8) and Cohen (9). Computer soft-
ware can be purchased to automate the computations. One
product is PASS� (10), which computes sample size and
power for a broad range of experimental designs and types
of response variables. Users of computer software are
strongly cautioned to compare the computer output with
hand-calculated and tabled values in order to make sure that
the program is being used and interpreted correctly.

Dropout Rate and Compliance
When participants drop out of a study or do not completely
follow the protocol for a test diet, the statistical power of the
design is reduced. Investigators should estimate dropout rate
and compliance from previous similar studies and inflate the
sample size estimates accordingly. The question of whether
and how to use data from dropouts or noncompliant partic-
ipants will be discussed in Analyzing the Data.

IMPLEMENTING THE STUDY:
STATISTICAL ISSUES

Randomization
One of the statistician’s tasks is ensuring that a valid ran-
domization procedure is used to assign participants to test
diets in a way that protects against selection bias. A random-
ization can also provide balance in the design so that the
main effects of interest will not be confounded with other
factors. For example, in a parallel-arm design, the random-
ization scheme should provide balance across gender, race,
and age group for each test diet. In a crossover design, the
test diet sequences should be balanced across time period
and carryover effects from one diet to the next.

For example, Table 2-4 shows a set of test diet se-
quences that were used in a feeding study having a four-
period crossover design. In this example, the statistician
discussed the study with the investigator and learned that
dropouts were most likely to occur within the first week of
the first test period (these were participants who discovered
they could not tolerate the protocol). Therefore, the statisti-
cian devised the randomization in two steps: First, partici-
pants were assigned to test diets for Period 1. The scientist
then reported which participants had dropped out by the end
of Period 1. Once the dropouts were eliminated from Period

1, the sequence of test diets for Periods 2, 3, and 4 were then
computed for the remaining participants. This strategy
achieved the best balance of diets in each period and of pairs
of diets across the whole design.

A great variety of randomization schemes can be de-
vised to meet the requirements of a feeding study. Meinert
(6) and Friedman, Furberg, and DeMets (7) provide detailed
descriptions of methods for assigning participants at random
to groups.

Data Management
The development of a data management system should begin
during the early project-planning stages. Data management
encompasses the entire process from information gathering
to data analysis: (1) the design and testing of all forms used
to gather data; (2) the development of systems for labeling
samples, identifying participants, and masking (ie,
‘‘blinding’’) certain processes; (3) data entry and error
checking; (4) online storage plus offline archiving and re-
trieval of files; (5) the production of summary statistics at
interim stages of the project; and (6) the development of data
files to be used for analysis. A good data management
system is essential to producing high-quality information
that can be readily analyzed, and to ensure the security,
safety, and confidentiality of the data.

The first responsibility of the data management team is
to develop and test the forms that will be used in data col-
lection. In feeding studies this generally involves forms that
track variables stemming from many activities, such as par-
ticipant characteristics and participant responses during re-
cruitment and throughout the study, laboratory assays of bi-
ologic samples, and nutrient analysis of the diets. The data
management team needs to work with the investigators and
the project staff to develop a system that accommodates not
just data management but also clinic, laboratory, and kitchen
procedures. The timing of each measurement and the nature
of each variable should be planned in advance. Adequate
identification and labeling systems need to be developed to
facilitate the collection of data. The data management team
should develop a system for tracking laboratory samples and
data as well as a coding system for information that must be
kept masked. All forms must be tested (and revised) before
the study begins. Meinert (6) provides a comprehensive ref-
erence to good practices in data management.

Another task of the data management team is to create
a central database with a high level of security, protection,
and quality control. For the data to be useful not just during
the life of the project but also for a wide range of future
research investigations, the issues of quality control, storage,
security, access, and reporting are of paramount importance.
Appropriate system security features need to be imple-
mented to ensure that access to data, forms, and reports is
restricted to authorized personnel and investigators. Fre-
quent backups of data protect the database from possible
data loss or corruption caused by electronic or power irreg-
ularities.

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
to Design and Management", American Dietetic Association, © 1999.
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TABLE 2-4

Randomization Scheme for a Four-Period Crossover Design1

Subject ID Period 1 Period 2 Period 3 Period 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

D
C
C
D
A
A
D
C
A
B
D
C
C
B
A
B
B
A

B
A
A
C
B
C
A
B
D
A
C
D
B

—1

—1

D
D

—1

C
D
B
B
C
D
B
D
B
C
A
A
A
—
—
C
A
—

A
B
D
A
D
B
C
A
C
D
B
B
D
—
—
A
C
—

Totals Period 1 Period 2 Period 3 Period 4

A
B
C
D

32

32

5
4

4
4
3
4

4
4
4
3

4
4
3
4

Individual ordered diet pairs

�A
4

AB
5

AC
3

AD
3

�B
4

BA
3

BC
4

BD
4

�C
5

CA
5

CB
3

CD
4

�D
4

DA
4

DB
4

DC
3

1Diet treatment groups are indicated by letters A–D.
2For Period 1 there were originally 5 subjects in Diet Group A and 4 subjects in Diet Group B. Several subjects dropped out before Period 2.

Data quality control should include review and error
checking at a number of stages of data entry and manage-
ment. All forms should be reviewed for unusual events or
missing information before data are entered. Programs for
identifying out-of-range values can be executed once the
data are entered. It is necessary to develop a system for que-
rying missing information and out-of-range data that keeps
the project staff in communication with the data manage-
ment team. At regular intervals, the data management team
should produce summary reports with descriptive informa-
tion from the database. The data management team is also
responsible for producing files in the appropriate format for
data analysis.

ANALYZING THE DATA

Exclusion of Data
In any clinical study, the investigators must decide which
data from which participants should be included in the anal-

ysis. For example, there may be reason to believe that not
everybody complied fully with the protocol. Some responses
may appear atypical. Some participants may have dropped
out before the study was finished. A well-planned feeding
study will include a discussion of these issues and a state-
ment of policy in advance of the trial.

It is likely that the statistician on the research team will
bring to this discussion the intent-to-treat paradigm. This
paradigm, well established in the clinical trials literature,
directs the investigators to analyze data from all participants
that were randomized into the study. Excluding participants
according to compliance, errors in delivering the test diet,
or other criteria can lead to an unknown amount of bias in
the results. However, the intent-to-treat paradigm relates
most directly to clinical trials in which noncompliance and
inaccurate delivery of the treatment are considered valid as-
pects of the treatment regimen as it may be applied to the
population at large. Friedman, Furberg, and DeMets (7) pro-
vide a discussion of the intent-to-treat paradigm from the
clinical perspective.

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
to Design and Management", American Dietetic Association, © 1999.
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There is room for discussion about the way in which
unusual observations or departures from treatment will be
handled in feeding studies. This discussion should be held
in advance of any data analysis and should result in a care-
fully documented policy on criteria for excluding partici-
pants or data from analysis. This policy should be fully
described in the publications resulting from the study.
Regardless of the approach taken, the policy should be suf-
ficiently well-considered and valid to withstand the scrutiny
of peer review.

The Analytical Approach
Before any analysis, the statistician inspects the data through
various graphical, descriptive, and diagnostic routines to en-
sure that the assumptions of the proposed analytical ap-
proach are satisfied. For linear models such as analysis of
variance and linear regression, these assumptions include
normality of errors and constant error variance. For cross-
over designs the structure of the covariance matrix should
also be evaluated. Data outliers, or extreme values that do
not appear to belong to the distribution of the majority of
the data, will be evaluated. Some response measures may
require a transformation, such as a logarithmic transforma-
tion for skewed data, before they are analyzed.

It is the responsibility of the statistician to select the
most powerful statistical analysis compatible with the nature
of the data. This is because the use of human participants
requires that exposure to risk be balanced with maximal ben-
efit from the acquired data. Several aspects of feeding studies
suggest that the best statistical analysis is likely to be com-
plex:

1. Many experimental designs have more than one test diet.
A simple two-sample procedure such as a t-test compar-
ison of one test diet to a control diet will generally be
less powerful than an analysis of variance, which includes
data from all of the test diets with follow-up comparisons
of pairs of test diets.

2. A study design may involve a number of factors such as
population subgroups, replicates, or centers that should
be represented in the analysis.

3. Covariates such as baseline values may need to be in-
corporated in the analysis.

4. Crossover studies require the investigation of carryover
effects and ‘‘test diet by time period’’ interactions that are
not of direct interest but affect the analytical approach
and results.

5. It may be necessary to provide a seasonal adjustment for
designs that include blocks of time.

6. The occurrence of dropouts in the study generates incom-
plete data, which adds to the complexity of the analysis.

There are a wide variety of statistical approaches that
can incorporate complex information, and more refinements
in methodology are always appearing in the literature. It is
a good idea to identify the probable analytical model at the

project planning stages and to nominate alternatives to use
if key assumptions are not met.

Multiple Tests of Significance
Most feeding studies involve a multiplicity of response mea-
surements and comparisons of interest. For example, several
plasma lipid measurements such as total cholesterol, LDL
cholesterol, and HDL cholesterol may be included in the
study. There may be several test diets in the study and an
interest in comparing all possible pairs of test diets. It is
important to determine in advance of the data analysis how
this multiplicity will be managed because each statistical test
carries with it an error rate given by the � level of the test.
The error rates of each test within the same study are addi-
tive, which means that if the error rates for statistical tests
are uncontrolled, there is a high chance that one or more
false conclusions will result from the data analysis of the
entire study.

A well-planned study provides not only an investigation
of the major research questions of interest but also an ex-
ploratory analysis of other factors that could lead to the next
research study. A good way to manage multiplicity in tests
of significance is to make a well-defined distinction between
these two phases. At the project planning stage, the study
team should define the measurements and comparisons of
interest comprising the primary aims of the study. Other
measurements and comparisons should then be designated
as ‘‘secondary’’ or exploratory. One approach to multiplicity
is for each primary measurement (such as total cholesterol,
LDL cholesterol, and HDL cholesterol) to be analyzed
without mutual adjustment for multiplicity. Within each pri-
mary measurement, a multiple comparison procedure with
good statistical properties should be used to adjust the sig-
nificance level of comparisons of primary importance, such
as comparisons in the level of total cholesterol between pairs
of test diets. The best multiple comparison procedure will
depend on the design and the structure of the comparisons.
Neter, Wasserman, and Kutner (11) describe several fre-
quently used procedures for making multiple comparisons.

The exploratory analysis of secondary measurements
and comparisons can be treated in a number of ways. One
option is to make a single Bonferroni adjustment to the
p-values of all of the secondary tests. Another option is to
report the unadjusted p-values of secondary tests in the lit-
erature without using the language of statistical inference.
This means that secondary tests would be treated in a section
on ‘‘exploratory data analysis’’ and discussed without using
the terms significantly different or not significantly different.

There are many statistical approaches to multiplicity,
and this topic is a matter of active debate in the statistical
literature. As a guiding principle, the reader of the study’s
results should be able to determine how many statistical tests
were conducted and what adjustments were made to account
for multiplicity. Reporting only the unadjusted p-values of
the few ‘‘significant’’ tests obtained from a vast search of

Source: "Well-Controlled Diet Studies in Humans, A Practical Guide 
to Design and Management", American Dietetic Association, © 1999.



18 Study Design

the database and hundreds or thousands of tests—known as
data-dredging—not only misleads the reader but also is
likely to lead to the embarrassment of researchers who pro-
duce unreplicable results.

When a careful approach to multiplicity is used, the
manuscript can indicate future analysis plans suggested by
exploratory approaches. The same cautious approach will
allow the investigators to report their primary results with
confidence.

CONCLUSION

The proper planning of a research study requires statistical
insight into study design, implementation, and data analysis.
Consultation with a statistician during the planning phase is
essential for proper planning. The hypotheses must be spec-
ified a priori and are the keystone to the experiment and
subsequent data analysis. The choice of experimental design
is based on a number of factors, including the number of
participants needed to show a prespecified effect size with a
specified degree of confidence to detect that effect size and
some assessment of likelihood of adherence and dropout.
Inclusion of a control group is highly desirable and in many
cases essential. Implementation of a well-designed study in-
cludes developing randomization procedures, study forms
that have been pretested, methods for masking data collec-
tors from knowing the treatment assignment of the partici-
pants they are measuring, plans for quality control of data
collection and transmission, and methods for data manage-
ment. The statistical analysis should be appropriate for the
study design and should in advance address statistical issues
such as adjusting significance levels for multiple compari-
sons, analytic approaches for dealing with dropouts, and
conditions for excluding data.

Careful attention paid to the statistical aspects of design,
implementation, and analysis in designing a human feeding
study will result in a well-designed study with results that
are readily interpretable.
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